This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Synthesis of O,O-Dialkyl 2-Oxo-2-(4-(Selenomorpho-Linosulfonyl)Phenylamino)Ethylphosphonate

Fang Wang^a; Liming Hu^b; Xiaopeng Li^b; Xuemei Xu^b; Hongguang Du^a
^a College of Science Beijing University of Chemical Technology, Beijing, China ^b College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing, China

To cite this Article Wang, Fang , Hu, Liming , Li, Xiaopeng , Xu, Xuemei and Du, Hongguang (2008) 'Synthesis of O,O-Dialkyl 2-Oxo-2-(4-(Selenomorpho-Linosulfonyl)Phenylamino)Ethylphosphonate', Phosphorus, Sulfur, and Silicon and the Related Elements, 183:2,610-616

To link to this Article: DOI: 10.1080/10426500701793212 URL: http://dx.doi.org/10.1080/10426500701793212

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 183:610–616, 2008 Copyright © Taylor & Francis Group, LLC

ISSN: 1042-6507 print / 1563-5325 online

DOI: 10.1080/10426500701793212

Synthesis of O,O-Dialkyl 2-Oxo-2-(4-(Selenomorpho-Linosulfonyl)Phenylamino)Ethylphosphonate

Fang Wang,¹ Liming Hu,² Xiaopeng Li,² Xuemei Xu,² and Hongguang Du³

¹College of Science Beijing University of Chemical Technology, Beijing 100029, China

²College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing 100022, China

³College of Science Beijing University of Chemical Technology, Beijing 100029, China

A series of O,O-dialkyl 2-oxo-2-(4-(seleomorpholinosulfonyl)phenylamino)ethy lphosphonate were synthesized by reactions of 2-chloro-N-(4-(seleomorpholino sulfonyl)phenyl)acetamide with dialkylphosphite in the presence of sodium hydride. The structure of all new compounds has been confirmed by ¹H NMR, ³¹P NMR, IR, Mass spectroscopy and elemental analyses.

Keywords Dialkyl phosphite; selenomorpholine; phosphonate; synthesis

INTRODUCTION

Since selenium was found to be an active center of glutathione peroxidase(GSH-Px), which can catalyze and decompose liquid hydroperoxide or hydrogen peroxide, the study of selenium biological activity has developed rapidly. 1-2 Selenoorganic compound, such as Ebselen, with the function against biological damage caused in vivo by reactive hydroperoxides, ³⁻⁷ which increased a striking interest in developing new seleoorganic compound for therapy. These compounds have been potentially used in a variety of fields varying from medicinal to agriculture application.⁸⁻¹⁰ In our pervious work, many selenoorganic compounds were synthesized and exhibited excellent pharmacological effect. 11-13 Recently, the antibiotic activity and plant systemic activity of selenomor pholine derivatives were studied in our

Address correspondence to Liming Hu, College of Life Sciences and Bioengineering, Beijing University of Technology, Beijing 100022, China. E-mail: huliming@bjut.edu.cn

Lab. 14-15 In this work, we present the synthesis of O,O-dialkyl 2-oxo-2-(4-(seleomorpholinosulfonyl)-phenyl-amino)ethylphosphonate.

RESULTS AND DISCUSSION

Synthesis of O,O-dialkyl 2-oxo-2-(4-(selenomorpholinosulfonyl) phenylamino) Ethyl Phosphonate

A general synthesis of the title compounds **7** is described by a multistep route outlined in Scheme 1. The synthesis of selenomorpholine started from selenium and utilized a synthetic sequence previously reported from our laboratory. Acylation of aniline followed by sulfonation with sulfuric chloride gave 4-acetamidobenzene-1-sulfonyl chloride **2**, which was coupled to selenomorpholine to give **3**. Ac-deprotection with aqueous sodium hydroxide followed by reaction with 2-chlorlacetyl chloride afforded the desired 2-chloro-N-(4-(selenomorpholinosulfonyl)-phenyl)acetamide **5**, which reacted with dialkyl phosphite in the presence of sodium hydride to give title compounds **7**.

The structure of **7** was confirmed by ^1H NMR, ^{31}P NMR, IR, Mass spectroscopy and elemental analyses. In the ^1H NMR spectra of compound **7**, the proton in PCH appeared as a doublet in the range of δ 3.0–3.2 ppm ($^2J_{\text{PH}}=20.4-21.4\text{Hz}$). The chemical shift of labile proton in the NH of compound **7** is 9.5–10.0 ppm, which can disappear slowly when deuterated. The ^{31}P NMR spectra of **7** revealed a singlet at the range of δ 19.1–22.6 ppm. The IR spectra of compound **7** showed the existence of the group P=O(1233–1281cm⁻¹) and C=O(1685–1699cm⁻¹).

The EI-MS spectra of 7 demonstrated the molecular ion peak (M^+) . Other ions were consistent with their structures and can be clearly assigned. Because there are two major isotopes of selenium (approximate ratio 2:1), the fragmental ion abundance ratio which contain two isotopes of selenium is 2:1.

EXPERIMENTAL

The melting points were determined on a hot stage apparatus and uncorrected, Elemental analyses were performed on a CHN Carlo Erba element analyzer. ¹H NMR spectra were recorded with a Varian XL-200 spectrometer, TMS was used as an internal standard for ¹H NMR and 85% H₃PO₄ was used as an external standard for ³¹P NMR. The IR spectra were measured by a NICOLET AVATAR360 instrument. Mass spectra were recorded with a HP-5988A spectrometer.

 $R = -CH_3$, $-C_2H_5$, $-CH_2CH_2CH_3$, $-CH(CH_3)_2$, $-CH_2CH_2CH_2CH_3$, $-CH(CH_3)CH_2CH_3$, $-CH_2Ph$, **SCHEME 1**

The reagents and solvents were available commercially and purified according to conventional methods; column chromatography was performed on silica gel (10–40 μ , Hai Yang Chemical Factory of Qingdao). Unless other noted, all solvents were dried over Na₂SO₄ or MgSO₄, and the solvent was removed in a rotary evaporator under reduce pressure, chromatography was performed on silica gel.

N-phenylacetamide $\mathbf{1}$,¹⁷ 4-acetamidobenzene-1-sulfonyl chloride $\mathbf{2}^{18}$ and dialkylphos- phate $\mathbf{6}^{19}$ have been prepared following literature methods.

N-(4-(Selenomorpholinosulfonyl)phenyl)acetamide (3)

To a stirred solution of selenomorpholine (3.0 g, 20 mmol) and dry pyridine (10 mL) at room temperature under a nitrogen atmosphere, 4-acetamidobenzene-1-sulfonyl chloride (5.2 g, 22 mmol) was added over a period of 0.5 h, and was heated at 100°C for 1 h. The resulting mixture was quenched with ice and water. A light yellow precipitate was produced. The crude product was filtered and washed with water and purified by recrystallization in ethanol as a white solid (m.p. 89–91°C, yield, 74%).

4-(Selenomorpholinosulfonyl)benzeneamine (4)

A solution of N-(4-(selenomorpholinosulfonyl)phenyl)acetamide (1.75 g, 5 mmol) and 10% sodium hydroxide solution (20 mL) was refluxed under stirring for 1h and then allowed to cool to room temperature. The reaction mixture was neutralized with 6M hydrochloric acid solution to pH 8. The reaction mixture was cooled, and the precipitate was filtered off and washed with hot water. The crude product was purified by recrystallization in ethanol to provide compound 4 (1.35 g). White crystal, m.p.201–202°C; yield 88%. 1 HNMR (δ ,ppm,CDCl₃) 2.71 (t,4H SeCH₂, 3 J_{HH} =4.8Hz), 3.43 (t,4H,NCH₂, 3 J_{HH} =4.8Hz), 4.17 (s,2H,NH), 6.64 (d,2H,Ar—H), 7.45 (d,2H,Ar—H),MS(M/z,%) 306 (M⁺,4.2).

2-Chloro-N-(4-(selenomorpholinosulfonyl)phenyl) Acetamide (5)

A mixture of 4-(selenomorpholinosulfonyl)benzeneamine (3.06 g, 10 mmol) in chloroform (20 mL) and triethylamine (1.2 g, 12 mmol) was treated with 2-chloroacetyl chloride (1.13 g, 10 mmol) in chloroform (5 mL) and stirred for 1 h under 2°C, and standing for overnight at room temperature. The reaction mixture was washed with water. The organic layer was separated and dried over sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure, and the crude product was purified by recrystallization in ethanol to provide compound 5 as a white solid (2.7 g, 71%).

O,O-Dialkyl 2-oxo-2-(4-(selenomorpholinosulfonyl) phenylamino) Ethylphosphonate (7a-g)

General procedure

A solution of dialkyl phosphite (5 mmol) in dry petroleum ether (20 mL) was treated with 60% sodium hydroxide (0.22 g, 5.5 mmol). The reaction mixture was stirred at room temperature for 1h and concentrated under reduced pressure till half volume. Then the mixture was cooled under ice bathe to 5°C, a solution of 2-chloro-N-(4-(selenomorpholinosulfonyl)phenyl)acetamide (1.91 g, 5.5 mmol)) in acetonitrile (20 mL) was added dropwise and the reaction was allowed to proceed at 70°C for 3h. Then the reaction mixture was cooled to room temperature and washed with water and extracted with chloroform. The combined organic extracts were dried (Na₂SO₄), filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, 15% acetone in petroleum ether) to provide title compounds 7.

O,O-Dimethyl- 2-oxo-2-(4-(selenomorpholinosulfonyl) phenylamino) ethylphos- phonate(7a)

Light yellow solid, yield, 42%, m.p. 60–62°C. 1 H NMR (δ ,ppm): 2.69–2.77 (m,4H,SeCH₂), 3.09 (d,2H,PCH₂, $^{2}J_{PH}$ =20.4Hz), 3.52–3.57 (m,4H,NCH₂), 3.77 (d,6H,OCH₃, $^{3}J_{PH}$ =10.7Hz), 7.44–7.78 (m,4H,Ph), 9.53 (s,1H, NH) . IR (cm⁻¹): 1697 (ν_{C} =0), 1253 (ν_{P} =0), 1159 (ν_{S} =0), 1027 (ν_{P} -0-C) MS (M/z,%): 456 (M⁺, 0.43), 306 (2.07), 242 (8.31), 151 (6.32), 123 (8.74), 109 (15.95), 78 (23.51), 63 (25.72), 42 (100). 31 PNMR(δ ,ppm): 22.15. Anal. Calcd. for C₁₄H₂₁N₂O₆PSSe (456): C, 36.90; H, 4.65; N 6.15; found, C, 36.72; H, 4.71; N, 6.19.

O,O-Diethyl- 2-oxo-2-(4-(selenomorpholinosulfonyl) phenylamino) ethylphosphonate (7b)

Light yellow solid, yield, 48%, m.p. 74–77°C. ¹H NMR(δ ,ppm): 1.38 (t,6H,CH₃,³ $J_{\rm HH}$ =6.8Hz), 2.72 (m,4H, SeCH₂), 3.08 (d,2H,PCH₂, ² $J_{\rm PH}$ =21.4Hz), 3.45 (m,4H,NCH₂), 4.12–4.26 (m, 4H, OCH₂), 7.53–7.64 (m,4H,Ph), 9.66 (s, 1H,NH). IR (cm⁻¹): 1696 (ν_C=_O), 1233 (ν_P=_O), 1160 (ν_S=_O), 1026 (ν_P-_O-_C). MS(M/z,%): 484 (M⁺, 0.21), 335 (1.49), 272 (7.77), 179 (5.23), 150 (19.51), 108 (15.97), 92 (17.85), 63 (20.92), 42 (100³¹PNMR(δ ,ppm): 22.64. Anal. Calcd. for C₁₆H₂₅N₂O₆PSSe (484): C, 39.76; H, 5.21; N 5.80; found, C, 39.48; H, 5.29; N, 6.01.

O,O-Di(n-propyl)-2-oxo-2-(4-(selenomorpholinosulfonyl) phenylamino) ethylphos- phonate (7c)

Light yellow solid, yield, 56%, m.p. 88-91°C. $^1{\rm H}$ NMR (δ,ppm): 0.99 (t,6H,CH₃, $^3J_{\rm HH}$ =7.2Hz), 1.73 (m,4H, CH₂CH₃, $^3J_{\rm HH}$ =6.8Hz), 2.71 (m,4H, SeCH₂, $^3J_{\rm HH}$ =5.3Hz), 3.15 (d,2H,PCH₂, $^2J_{\rm PH}$ =21.4Hz), 3.41 (m,4H,NCH₂, $^3J_{\rm HH}$ =4.9Hz), 4.05–4.15 (m,4H,OCH₂, $^3J_{\rm HH}$ =6.8Hz), 7.46–7.61 (m,4H,Ph), 9.66 (s, 1H,NH). IR (cm $^{-1}$): 1698 (ν_C=₀), 1233 (ν_P=₀), 1161 (ν_S=₀), 1007 (ν_P-₀-_C). MS (M/z,%): 512 (M⁺, 0.24), 362 (1.37), 298 (6.32), 207 (16.63), 179 (6.17), 150 (17.05), 106 (20.45), 63 (26.37), 42 (100). $^{31}{\rm PNMR}(\delta,{\rm ppm})$: 22.23. Anal. Calcd. for C₁₈H₂₉N₂O₆PSSe (512): C, 42.28; H, 5.72; N 5.48; found, C, 42.41; H, 5.74; N, 5.56.

O,O-Di(iso-propyl)- 2-oxo-2-(4-(selenomorpholinosulfonyl) phenylamino) ethylphos- phonate (7d)

Light yellow solid, yield, 39%, m.p. 67–69°C. $^1{\rm H}$ NMR (δ ,ppm): 1.36 (dd,12H,CH $_3$, $^3J_{\rm HH}$ =6.0Hz, $^4J_{\rm PH}$ =1.94Hz,) 2.69–2.75 (m,4H, SeCH $_2$), 3.03 (d,2H,PCH $_2$, $^2J_{\rm PH}$ =21.4Hz), 3.41-3.47 (m,4H,NCH $_2$), 4.69-4.80

(m,2H,OCH), 7.52–7.64 (m,4H,Ph), 9.74 (s,1H,NH). IR (cm $^{-1}$): 1696 ($\nu_{C=O}$), 1234 ($\nu_{P=O}$), 1160 ($\nu_{S=O}$), 1000 (ν_{P-O-C}). MS(M/z,%): 512 (M $^{+}$, 0.13), 362 (2.38), 298 (8.39), 179 (4.32), 150 (20.39), 106 (22.81), 63 (28.74), 42 (100). 31 PNMR(δ ,ppm): 20.15. Anal. Calcd. for C₁₈H₂₉N₂O₆PSSe (512): C, 42.28; H, 5.72; N 5.48; found, C, 42.43; H, 5.68; N, 5.51.

O,O-Di(n-butyl)- 2-oxo-2-(4-(selenomorpholinosulfonyl) phenylamino) ethylphosphonate (7e)

Light yellow solid, yield, 69%, m.p. 97–99°C. ¹H NMR (δ ,ppm): 0.93 (t,6H,CH₃,³ $J_{\rm HH}$ =6.8Hz), 1.31–1.49 (m,4H, CH₂CH₃,³ $J_{\rm HH}$ =7.2Hz), 1.61–1.76 (m, 4H,OCH₂ CH₂,³ $J_{\rm HH}$ =7.0Hz), 2.69–2.74 (m,4H,SeCH₂, ³ $J_{\rm HH}$ =4.9Hz), 3.06 (d, 2H,PCH₂,² $J_{\rm PH}$ =21.4Hz), 3.42–3.47 (m,4H, NCH₂, ³ $J_{\rm HH}$ =4.9Hz), 4.05-4.16 (m,4H,OCH₂,³ $J_{\rm HH}$ =6.8Hz), 7.47–7.73 (m,4H,Ph), 9.58 (s,1H,NH). IR (cm⁻¹): 1699 (ν_C=_O), 1281 (ν_P=_O), 1159 (ν_S=_O), 1026 (ν_P-_O-_C). MS (M/z,%): 540 (M⁺, 0.11), 390 (2.41), 235 (10.37), 207 (10.91), 193 (14.36), 150 (35.75), 136 (2.95), 63 (27.14), 57 (100). ³¹PNMR (δ ,ppm): 22.30. Anal. Calcd. for C₂₀H₃₃N₂O₆PSSe (540): C, 44.53; H, 6.17; N 5.19; found, C, 44.38; H, 6.14; N, 5.21.

O,O-Di(iso-butyl)-2-oxo-2-(4-(selenomorpholinosulfonyl) phenylamino) ethylphosphonate (7f)

Light yellow solid, yield, 47%, m.p.83–86°C. ¹H NMR (δ ,ppm): 0.93 (d,6H,CH₃,³ $J_{\rm HH}$ =6.8Hz), 1.34 (d,6H,CH₃,³ $J_{\rm HH}$ =6.6Hz), 1.61–1.74 (m,2H, CH), 2.69 (m,4H,SeCH₂,³ $J_{\rm HH}$ =5.8Hz), 3.00 (d,2H, PCH₂,² $J_{\rm PH}$ =20.4Hz), 3.46 (m,4H, NCH₂,³ $J_{\rm HH}$ = 5.4Hz), 4.49–4.55 (m,4H,OCH₂,³ $J_{\rm HH}$ =5.8Hz), 7.57–7.68 (m,4H, Ph), 9.55 (s, 1H,NH). IR (cm⁻¹): 1695 ($\nu_{\rm C}$ =0), 1233 ($\nu_{\rm P}$ =0), 1160 ($\nu_{\rm S}$ =0), 997 ($\nu_{\rm P}$ -0–C). MS (M/z,%): 540 (M⁺,0.27), 390 (4.64), 333 (7.30), 242 (33.90), 207 (30.24), 150 (1.79), 42 (100). ³¹PNMR (δ ,ppm): 20.75. Anal. Calcd. for C₂₀H₃₃N₂O₆PSSe (540): C, 44.53; H, 6.17; N 5.19; found, C, 44.69; H, 6.23; N, 5.18.

O,O-Di(benzyl)- 2-Oxo-2-(4-(Selenomorpholinosulfonyl) phenylamino) ethylphosphonate (7g)

Light yellow solid, yield, 45%, m.p.103–106°C. ¹H NMR (δ ,ppm): 2.68–2.74 (m,4H,SeCH₂), 3.14 (d,2H,PCH₂,² J_{PH} =21.4Hz), 3.38–3.43 (m, 4H,NCH₂), 4.98–5.07 (m,4H,OCH₂), 7.32–7.68 (m,14H,Ph), 10.04 (s,1H,NH). IR (cm⁻¹): 1685 (ν_{C} =0), 1236 (ν_{P} =0), 1162 (ν_{S} =0), 1012 (ν_{P} -0-C). MS (M/z,%)608: C, ,0.14, 458 (1.37), 390 (4.64), 305 (4.23),

275 (7.82), 170 (2.56), 150 (4.37), 91 (100), 77 (53,4), 63 (27.6). 31 PNMR (δ ,ppm): 19.06. Anal. Calcd. for $C_{26}H_{29}N_2O_4$ PSSe (608): C, 62.18; H, 5.03; N4.51; found, C, 62.31; H, 5.09; N, 4.46.

REFERENCES

- X. L. Ji, W. X. Hu, J. P.Cheng, et al, Ecotoxicology and Environmental Safety, 64, 171 (2006).
- [2] M. P. Bansal P. Kaur, Indian Journal of Experimental Biology, 43, 1119 (2005).
- [3] J. K. Pearson and R. J.Boyd, Journal of Physical Chemistry A, 110, 8979 (2006).
- [4] Filipovska, G. F.Kelso, S. E.Brown, et al, Journal of Biological Chemistry, 280, 24113 (2005).
- [5] M. Giurg and H. M. Wojtowicz, J Polish Journal of Chemistry, 76, 537 (2002).
- [6] W. Sattler, M. Maiorino, and R. Stocker, Archives of Biochemistry and Biophysics, 309, 214 (1994).
- [7] M. Maiorino, A. Roveri, M. Coassin et al., Biochemical Pharmacology, 37, 2267 (1988).
- [8] P. Smrkolj, M. Germ, I. Kreft et al. Journal of Experimental Botany, 57, 3595 (2006).
- [9] R. J. Robbins, A-S.Keck, G. Banuelos, et al, Journal of Medicinal Food, 8, 204 (2005).
- [10] A. C. Pappas, F. S. Karadas, F. Peter, et al, Journal of Trace Elements in Medicine and Biology, 20, 155 (2006).
- [11] L. M. Hu, Z. Y Chen, S. M. Lu, et al, Phosphorus, Sulfur and Silicon and the Related Elements, 179, 1065 (2004).
- [12] X. Li, Y. Liu, J. Wu, et al, Thermochimica Acta, 387, 57 (2002).
- [13] L. M. Hu, J. H. Feng, Z. Y. Chen, et al, Chinese Journal of Chemistry, 21, 1642 (2003).
- [14] J. Wu, F. J.Gong, Z. Y. Huang, et al, Journal of Plant Nutrition, 23, 349 (2000).
- [15] X. Li, C. Y. Zheng, S- S. Qu, et al, Journal of Wuhan University of Technology, Materials Science Edition, 17, 90 (2002).
- [16] J. Wu, X. F. Liu, H. S. Xu, et al. Wuhan University Journal of Natural Sciences, 5, 89. (2000).
- [17] J. M.Zhou, M. Lin, and L. F.Yang, Journal of Xiamen University(Natural Science), 42, 679 (2003).
- [18] G. Blotny, Tetrahedron Letters, 44, 1499 (2003).
- [19] A. K. Misra and J. B.Lal, Indian Journal of Applied Chemistry, 28, 187 (1965).